联系我们

  • 地址:安徽省合肥市高新区5089号
  • 邮编:230000
  • 传真:0551-65708002
  • 网址:https://iat.ustc.edu.cn/
  • 邮箱:zhb@iat.ustc.edu.cn

校内导师

张旭

文章来源:本站原创

发布时间:2021-12-23 09:04:32

文章作者:本站编辑


姓名

张旭

性别

image.png

职称/职务

副教授

出生年月

1982.05

最高学历

博士

固定电话


工作单位

(至院、系、所)

中国科学技术大学微电子学院

联系地址


邮箱

Xuzhang90@ustc.edu.cn

教育背景

2005年中国科学技术大学 电子信息科学与技术专业理学学士

2010年在中国科学技术大学 生物医学工程专业博士

 

研究方向

开展神经康复工程领域的各类广泛性课题。具体研究兴趣包括智能肌电控制、基于电生理的多模态人机交互,神经肌肉控制机理和相关疾病病理,神经肌肉系统疾病的诊断、评估和治疗,先进康复辅助器械开发等

任职经历

2010年-2013年,赴美国芝加哥康复学院任博士后研究员

2013年8月-至今 中国科学技术大学,在电子科学与技术系任副教授

主持、参与

项目

先后参与多项国家863计划项目、国家自然科学基金项目、校级创新团队项目和企业合作项目。发表SCI、EI收录科研论文20余篇。


项目类别项目名称

国家自然科学基金(青年科学基金项目)基于模式识别的肌电控制用于脑卒中上肢康复的研究(61401421)

中国科学技术大学青年创新基金肌电控制用于中风偏瘫上肢康复若干关键问题研究(WK2100230014)


荣誉、奖项

 

 

科研成果

(论文、著作、

专利等)

代表性论文著作(节选)如下:
 
[1]   Tao W, Zhang X, Chen X, Wu D and Zhou P. Multi-scale complexity analysis of   muscle coactivation during gait in children with cerebral palsy. Front. Hum.   Neurosci., 9, 367 (13 pp.), 2015.

[2] Zhang X and Zhou P. Analysis of surface EMG baseline for   detection of hidden muscle activity. J. Neural Eng., 11(1), 016011 (8 pp.),   2014.

[3] Zhang X, Barkhaus P, Rymer WZ and Zhou P. Machine learning for   supporting diagnosis of amyotrophic lateral sclerosis using surface   electromyogram. IEEE Trans. Neural Syst. Rehab. Eng., 22(1): 96-103, 2014.

[4] Zhang X, Li Y, Chen X, Li G, Rymer WZ and Zhou P. The effect of involuntary   motor activity on myoelectric pattern recognition: a case study with chronic   stroke patients. J. Neural Eng., 10(4), 046015 (11 pp.), 2013.

[5] Zhang X, Chen X, Barkhaus P and Zhou P. Multiscale Entropy   Analysis of Different Spontaneous Motor Unit Discharge Patterns. IEEE J.   Biomed. Health Inform., 17(2): 470‒476, 2013.

[6] Zhang X and Zhou P. Filtering of surface EMG using ensemble   empirical mode decomposition. Med. Eng. Phys., 35(4): 537‒42,   2013.

[7] Zhang X and Zhou P. Sample entropy analysis of surface EMG for   improved muscle activity onset detection against spurious background spikes.   J. Electromyogr. Kinesiol., 22(6): 901‒907, 2012.

[8] Zhang X and Zhou P. High-density myoelectric pattern recognition   toward improved stroke rehabilitation. IEEE Trans. Biomed. Eng., 59(6): 1649‒1657,   2012.

[9] Zhang X, Chen X, Li Y, Lantz V, Zhao Z, Wang K and Yang J. A   framework for hand gesture recognition based on accelerometer and EMG   sensors. IEEE Trans. Syst. Man Cybern. A Syst. Humans, 41(6): 1064‒1076,   2011.

[10] Lu Z, Chen X, Li Q, Zhang X and Zhou P. A hand gesture   recognition framework and wearable gesture-based interaction prototype for   mobile devices. IEEE Trans. Human-Machine Syst., 2014.   DOI=10.1109/THMS.2014.2302794. (In Press)

[11] Li Y, Chen X, Zhang X, Zhou P. Several practical issues toward   implementing myoelectric pattern recognition for stroke rehabilitation. Med.   Eng. Phys., 2014. DOI= 10.1016/j.medengphy.2014.01.005. (In Press)

[12] P. Zhou, Zhang X. A novel technique for muscle onset detection   using surface EMG signals without removal of ECG artifacts. Physiol. Meas.,   35(1): 45‒54, 2014.

[13] Wang Q, Chen X, Chen R, Chen Y and Zhang X.   Electromyography-based locomotion pattern recognition and personal   positioning toward improved context-awareness applications. IEEE Trans. Syst.   Man Cybern. Syst., 43(5): 1216‒1227, 2013.

[14] Li Y, Chen X, Zhang X, Wang K and Wang JZ. A   sign-component-based framework for Chinese sign language recognition using   accelerometer and sEMG data. IEEE Trans. Biomed. Eng., 59(10): 2695‒2704.   2012.

[15] Zhou P, Barkhaus PE, Zhang X, Rymer WZ. Characterizing the   complexity of spontaneous motor unit patterns of amyotrophic lateral   sclerosis using approximate entropy. J. Neural Eng., 8(6), 066010 (10 pp.), 2011.